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Abstract
Jacobi algebroids, i.e. graded Lie brackets on the Grassmann algebra associated
with a vector bundle which satisfy a property similar to that of the Jacobi
brackets, are introduced. They turn out to be equivalent to generalized Lie
algebroids in the sense of Iglesias and Marrero. Jacobi bialgebroids are defined
in the same manner. A lifting procedure of elements of this Grassmann algebra
to multivector fields on the total space of the vector bundle which preserves
the corresponding Lie brackets is developed. This gives the possibility of
associating canonically a Lie algebroid with any local Lie algebra in the sense
of Kirillov.

PACS numbers: 02.20.Sv, 02.40.Yy

1. Introduction

This paper was originated as an attempt to understand the Lie algebroid structure onT ∗M ⊕M R

associated with a Jacobi structure (�,�) on a manifold M [Li]. The formula in [KSB]

[(α, f ), (β, g)] = (L�α
β − L�β

α − d〈�,α ∧ β〉 + fL�β − gL�α

− i�α ∧ β, 〈�,β ∧ α〉 + �α(g) − �β(f ) + f�(g) − g�(f )
)

which gives the Lie bracket on the space 1(M) × C∞(M) of sections of T ∗M ⊕M R, being
rather complicated, deserves a better understanding and explanation. During our work we
have noticed that it is very close to [IM1] which will be our primary reference paper.

Since a Jacobi bracket is just a Lie bracket on the algebra of smooth functions given by a
bilinear first-order differential operator, we start with the study of the Nijenhuis–Richardson
bracket on multilinear first-order differential operators. This bracket is a graded Lie bracket
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but it differs from the Richardson–Nijenhuis bracket. This is manifested by the fact that with
respect to the wedge product it is not a derivation but a first-order differential operator. This
is like the difference between the Poisson and Jacobi brackets.

We then discuss the case of a general Lie algebroid. Our primary object is the Schouten–
Nijenhuis bracket associated with the Lie algebroid rather than the Lie algebroid bracket itself.
Deforming the Schouten–Nijenhuis bracket to a graded Lie bracket which violates the Leibniz
rule, like in the case of the Nijenhuis–Richardson bracket for first-order differential operators,
we introduce the notion of a Jacobi algebroid. We find out that this is a structure equivalent
to the notion of a Lie algebroid with the presence of 1-cocycle as defined in [IM1].

Since any Lie algebroid structure on a vector bundle E is associated with a linear Poisson
structure on the dual bundle E∗, one can expect that there is a lifting procedure of multilinear
first-order differential operators acting on smooth functions on M to multivector fields on
TM ⊕M R, similar to the classical complete tangent lift of multivector fields on M (cf [IY,
GU]), which associates the corresponding linear Poisson structure with a given Jacobi bracket.
We define such lifts for Jacobi algebroids and show that the lift of a Jacobi structure gives
exactly the Lie algebroid bracket (50). We extend this for general local Lie algebra structure
in the sense of Kirillov [Ki]. The main result is that any local Lie algebra structure on a
one-dimensional bundle L induces naturally a Lie algebroid structure on the first jet bundle
J1(L).

Introducing a Cartan calculus for a given Jacobi Lie algebroid as in [IM1] one can define
Jacobi bialgebroids, by analogy to the Lie bialgebroids, as Jacobi algebroid structures on dual
pair of vector bundles such that the exterior differential induced by one structure is a graded
derivation for the Schouten–Jacobi bracket of the second one. We show that this reduces
exactly to the notion of a generalized Lie bialgebroid in [IM1]. The advantage of using
consequently graded brackets on the corresponding Grassmann algebras is that this definition
becomes more natural.

2. Graded Lie brackets

A graded Lie bracket on a graded vector space A = ⊕
n∈Z

An (‘graded’ means always
‘Z-graded’ throughout this paper) is a bilinear operation [ , ] : A × A −→ A, being graded

[An,Am] ⊂ An+m (1)

graded skew-symmetric

[X,Y ] = −(−1)xy[Y,X] (2)

and satisfying the graded Jacobi identity

[[X,Y ], Z] = [X, [Y,Z]] − (−1)xy[Y, [X,Z]] (3)

where we fix the convention that we write simply x, a, etc, for the Lie algebra degrees of
homogeneous elements X,A, etc, when no confusion arises.

One sometimes writes the graded Jacobi identity in the form

(−1)xz[[X,Y ], Z] + (−1)yx[[Y,Z],X] + (−1)zy[[Z,X], Y ] = 0 (4)

which is equivalent to (3) for the graded skew-symmetric brackets. However, for the non-
skew-symmetric brackets the formula (3) seems to be better, since it means that the adjoint
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map X → adX
def=[X, ·] is a representation of the bracket, i.e. ad[X,Y ] is equal to the graded

commutator

[adX, adY ]
def= adX ◦ adY − (−1)xyadY ◦ adX = ad[X,Y ] (5)

whereas (4) has no clear direct meaning.
With a given smooth (C∞) manifold M several natural graded Lie brackets of tensor fields

are associated. Historically the first one was probably the famous Schouten–Nijenhuis bracket
[·, ·]SN defined on multivector fields (see [Sc, Ni]). It is the unique graded extension of the
usual bracket [·, ·] on the space X (M) of vector fields to the exterior algebra A(M) =⊕

n∈Z
A[n](M) of multivector fields (where A[n](M) = �(�nTM) is the space of n-vector

fields for n � 0 and A[n](M) = {0} for n < 0) such that

(a) the degree of X ∈ A[n](M) with respect to the bracket is (n − 1)
(b) [X, f ]SN = X(f )

(c) [X,Y ∧Z]SN = [X,Y ]SN ∧Z+(−1)(k−1)lY ∧ [X,Z]SN , forX ∈ A[k](M), Y ∈ A[l](M),

i.e. ad is a representation of the Schouten–Nijenhuis bracket in graded derivations of the
graded associative algebra A(M).

The Schouten–Nijenhuis bracket is an example of what is sometimes called a
Gerstenhaber algebra (see [KS, KS1]) which consists of a triple (A = ⊕n∈ZAn,∧, [·, ·]),
such that (A, [·, ·]) is a graded Lie algebra and

(A = ⊕n∈ZA[n],∧)
, with A[n] = An+1, is a

graded associative commutative algebra, and adX, for adX ∈ Ax is a derivation with respect
to ∧ with degree x, i.e.

[X,Y ∧ Z] = [X,Y ] ∧ Z + (−1)x(y+1)Y ∧ [X,Z]. (6)

From (6) it follows that in any Gerstenhaber algebra

[X1 ∧ · · · ∧ Xm, Y1 ∧ · · · ∧ Yn]

=
∑

k,l

(−1)k+l[Xk, Yl] ∧ · · · ∧ X̂k ∧ · · · ∧ Xm ∧ Y1 ∧ · · · ∧ Ŷ l ∧ · · · ∧ Yn (7)

where Xk, Yl ∈ A0 and the hats stand for omissions. Note that A0 is a Lie subalgebra of A
and V = A−1 is an associative commutative subalgebra of A.

The Schouten–Nijenhuis bracket is a particular case of the so-called Nijenhuis–Richardson
bracket [NR] which, in turn, is the skew-symmetrization of the natural graded Lie bracket
on multilinear operators discovered by Gerstenhaber [Ge]. We will call the last bracket the
Gerstenhaber bracket. We will define all these brackets in detail to fix notation and signs.

Gerstenhaber bracket. LetV be a vector space over a field k. Denote the space of (p + 1)-linear
maps A : V × · · · ×V → V by Mp(V ). On the graded vector space M(V ) = ⊕

p∈Z
Mp(V ),

where M−1(V ) = V and Mp(V ) = {0} for p < −1, we define first insertion operators. For
A ∈ Ma(V ), B ∈ Mb(V ), the insertion ıBA ∈ Ma+b(V ) is defined by

ıBA(x0, . . . , xa+b) =
a∑

k=0

(−1)bkA(x0, . . . , xk−1, B(xk, . . . , xk+b), xk+b+1, . . . , xa+b). (8)

Then the Gerstenhaber bracket [A,B]G is given by

[A,B]G = −1AB + (−1)abıBA. (9)

We can consider the graded subspace A(V ) of skew-symmetric elements of M(V ). The
Nijenhuis–Richardson bracket on A(V ) is the skew-symmetrization of the Gerstenhaber
bracket

[A,B]NR = (a + b + 1)!

(a + 1)!(b + 1)!
skew([A,B]G) (10)
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where skew stands for the antisymmetrization projector in M(V ). We have [A,B]NR =
−iAB + (−1)abiBA, with

iBA(x0, . . . , xa+b) =
∑

σ∈S(a+b,b)

(−1)σA
(
B

(
xσ(0), . . . , xσ(b)

)
, xσ(b+1), . . . , xσ(a+b)

)
(11)

where S(a + b, b) is the set of unshuffles σ : {0, . . . , a + b} → {0, . . . , a + b} with
σ(0) < · · · < σ(b), σ(b + 1) < · · · < σ(a + b). The following is well known.

Theorem 1. The Gerstenhaber bracket and the Nijenhuis–Richardson bracket make the
graded vector spaces M(V ) and A(V ), respectively, into graded Lie algebras. Moreover,

(a) the equation [A,A]G = 0 for A ∈ M1(V ) is equivalent to the fact that the bilinear
operation A on V is associative;

(b) the equation [A,A]NR = 0 for A ∈ A1(V ) is equivalent to the fact that the skew-bilinear
operation A on V is a Lie bracket.

Suppose now that V is an associative commutative algebra with unit 1. ThenM(V ) is a graded
associative algebra (with elements of Ma(V ) being of degree a + 1) with the obvious product

A · B(x0, . . . , xa+b+2) = A(x0, . . . , xa)B(xa+1, . . . , xa+b+2) (12)

for A ∈ Aa(V ), B ∈ Ab(V ). Similarly, A(V ) is, in a natural way, a graded associative
commutative algebra (again, with elements of Ma(V ) being of degree a + 1) with the obvious
wedge product

A ∧ B = (a + b + 2)!

(a + 1)!(b + 1)!
skew(A · B). (13)

Denote by Diff (V ), Diff 1(V ) and Der(V ), respectively, the space of linear differential
operators, linear-first order differential operators and derivations on V . Similarly, by
ADiff p(V ), ADiff p1 (V ) and ADerp(V ), we denote the corresponding skew (p + 1)-linear
operators on V which are, respectively, differential operators, first-order differential operators
and derivations with respect to each variable separately. By ADiff (V ), ADiff 1(V ) and
ADer(V ), we denote the corresponding graded vector spaces. It is easy to see the following
(cf [Gr]):

Theorem 2.

(a) ADiff (V ), ADiff 1(V ) and ADer(V ) are graded associative subalgebras of (A(V ),∧)
and graded Lie subalgebras of (A(V ), [·, ·]NR).

(b) There is a canonical splitting

ADiff p1 (V ) = ADerp(V ) ⊕ ADerp−1(V ) (14)

given by A = A1 + I ∧ A2, where A1 ∈ ADerp(V ), A2 = i1A = A(1, ·, . . . , ·) ∈
ADerp−1(V ) and I is the identity map on V .

(c) (ADer(V ),∧, [·, ·]NR) is a Gerstenhaber algebra. In the case when V = C∞(M) is
the algebra of smooth functions on a manifold M, one has ADer(V ) = A(M) and the
Nijenhuis–Richardson bracket reduces to the Schouten–Nijenhuis bracket.

Proof. One can find the proofs of the parts (a) and (b) in [Gr], section 3. The part (c) follows
easily from the following properties of the insertion operators versus wedge products:

iC(A ∧ B) = (iCA) ∧ B + (−1)c(a+1)A ∧ (iCB) (15)

iA∧BC = (−1)c(b+1)(iAC) ∧ B + A ∧ (iBC) for C ∈ ADerc(V ). (16)

Here, according to our convention, A ∈ Aa(V ), i.e. A is (a + 1)-linear, etc. �
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Remark. Our convention of signs in the Gerstenhaber, and hence in the Nijenhuis–
Richardson bracket, is different from the original one. This is chosen in this way in order to
get a Gerstenhaber algebra structure on ADer(V ) and hence on A(M). Also the standard
Schouten–Nijenhuis bracket, which is still used by many authors, differs by sign from ours.
In particular, the Schouten bracket used in [IM1] is not a graded Lie bracket, since it is not
graded skew-symmetric. It seems reasonable to use consequently graded Lie algebra brackets
in order to avoid confusions. This will also simplify certain formulae and definitions, as we
will see it later.

Since we already know that for an associative commutative algebra V the triple
(ADer(V ),∧, [·, ·]NR) is a Gerstenhaber algebra, let us look closer at the structure of the
algebra

(ADiff 1(V ),∧, [·, ·]NR
)
. In the case V = C∞(M) we will write ADiff 1(M) instead

of ADiff 1(V ).
Since iA∧BI = A ∧ B = (iAI) ∧ B + A ∧ (iBI) − A ∧ B, we have for C ∈ ADiff c1(V )

instead of (16) the following:

iA∧BC = (−1)c(b+1)(iAC) ∧ B + A ∧ (iBC) − A ∧ B ∧ i1C. (17)

This, in turn, implies that on ADiff 1(V ) we have

[A,B ∧ C]NR = [A,B]NR ∧ C + (−1)a(b+1)B ∧ [A,C]NR − (−1)ai1A ∧ B ∧ C. (18)

Note that D = i1 is a graded derivative of the wedge product of degree −1 and D̃(X) =
(−1)xD(X) defines a right derivative:

D̃(X ∧ Y ) = X ∧ D̃(Y ) + (−1)y+1D̃(X) ∧ Y. (19)

In general, we will call the Gerstenhaber–Jacobi algebra a triple (A = ⊕n∈ZAn,∧, [·, ·]) as
in the Gerstenhaber algebra case but with the graded bracket satisfying

[X,Y ∧ Z] = [X,Y ] ∧ Z + (−1)x(y+1)Y ∧ [X,Z] − D̃(X) ∧ Y ∧ Z (20)

where D̃ is a graded linear map of degree −1, instead of the Leibniz rule. Putting Y = Z = 1
we obtain that D̃(X) = [X, 1], so that D̃ is a right-graded derivation of degree −1 with
respect to both: the associative and Lie algebra structures. Here we assume that the associative
commutative algebra V = A−1 has the unit 1 (if not, we can always easily extend the whole
structure). Thus, in the case of a Gerstenhaber–Jacobi algebra adX is not a derivative but a
differential operator of first order with respect to the wedge product (cf [Ko]).

3. Lie algebroids and Jacobi algebroids

Let M be a smooth manifold. A Lie algebroid on M is a vector bundle τ :L → M , together
with a bracket [·, ·]:�L × �L → �L on the C∞(M)-module �L of smooth sections of L, and
a C∞(M)-linear map a:�L → X (M) from �L to the Lie algebra of vector fields on M, called
the anchor of the Lie algebroid, such that

(i) the bracket on �L is R-bilinear, alternating and satisfies the Jacobi identity.
(ii) [X, fY ] = f [X,Y ] + a(X)(f )Y for all X,Y ∈ �L and all f ∈ C∞(M).

From (i) and (ii) it follows easily
(iii) a([X,Y ]) = [a(X), a(Y )] for all X,Y ∈ �L.

We get an algebraic counterpart of the notion of Lie algebroid replacing the algebra C∞(M)
of smooth functions by an arbitrary associative commutative algebra V , and the module of
sections of the vector bundle τ :L → M by a moduleL over the algebraV : a Lie pseudoalgebra
over V is a V -module L together with a bracket [·, ·]:L × L → L on the module L, and a
V -module morphism a:L → Der(V ) from L to the V -module Der(V ) of derivations of V ,
called the anchor of L, such that
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(i) the bracket on L is bilinear, alternating and satisfies the Jacobi identity;
(ii) For all X,Y ∈ L and all f ∈ V we have

[X, fY ] = f [X,Y ] + a(X)(f )Y (21)

(iii) a([X,Y ]) = [a(X), a(Y )] for all X,Y ∈ L.

As before, (i) and (ii) imply (iii) if only the V -module L is faithful.
Lie algebroids on a singleton base space are Lie algebras. Another extreme example is the

tangent bundle TM with the canonical bracket on the space X (M) = �TM of vector fields.
Lie pseudoalgebras in slightly more general setting appeared first in the paper of Herz

[He] but one can find similar concepts under more than a dozen of names in the literature (e.g.
(R, A)-Lie algebras, Lie–Cartan pairs, Lie–Rinehart algebras, differential algebras, etc). Lie
algebroids were introduced by Pradines [Pr]. For both notions we refer to a survey article by
Mackenzie [Ma].

From now on we assume that L is a vector bundle over M, V (M) = C∞(M) is the algebra
of smooth functions on M, L is the V (M)-module of smooth sections of L. Any Gerstenhaber
algebra structure on the Grassmann algebraA(L) = ⊕n∈ZAn(L), whereAn(L) = �(

∧n+1
L),

we will call a Schouten–Nijenhuis algebra. As it was already indicated in [KS], the Schouten–
Nijenhuis algebras are in one–one correspondence with the Lie algebroids:

Theorem 3. Any Schouten–Nijenhuis bracket [·, ·] on A(L) induces a Lie algebroid bracket
on L = A0(L) with the anchor defined by a(X)(f ) = [X, f ]. Conversely, any Lie algebroid
structure on L gives rise to a Schouten–Nijenhuis bracket on A(L) for which L = A0(L) is a
Lie subalgebra and a(X)(f ) = [X, f ].

Let (L)= ⊕n∈Z [n] be the V (M)-module dual to A(L)= ⊕n∈Z A[n](L), where
[n](L)=�(

∧n
L∗) is the space of sections of the n-exterior power of the bundle L∗ dual to

L. We can think of elements of A[n](L) as being ‘n-vector fields’ and elements of [n](L) as
being ‘n-forms’.

The Lie algebroid bracket on L = �L induces the well-known generalization of the
standard Cartan calculus of differential forms and vector fields [Ma, MX] (one can find an
algebraic calculus for the gauge theories built on extensions of the Lie algebroids in [LM]).

The exterior derivative d : [k](L) → [k+1](L) is defined by the standard formula

dµ(X1, . . . , Xk+1) =
∑

i

(−1)i+1[Xi,µ(X1, . . . , X̂i , . . . , Xk+1)]

+
∑

i<j

(−1)i+jµ([Xi,Xj ],X1, . . . , X̂i, . . . , X̂j , . . . , Xk+1) (22)

where Xi ∈ L and the hat over a symbol means that this is to be omitted. For X ∈ L, the
contraction iX:[p](L) → [p−1](L) is defined in the standard way and the Lie differential
operator £X is defined by the graded commutator

£X = iX ◦ d − d ◦ iX. (23)

The following theorem contains a list of well-known properties of these objects.

Theorem 4. Let µ ∈ [k](L), ν ∈ (L) and X,Y ∈ L. We have

(a) d ◦ d = 0
(b) d(µ ∧ ν) = d(µ) ∧ ν + (−1)kµ ∧ d(ν)
(c) £X(µ ∧ ν) = £Xµ ∧ ν + µ ∧ £Xν

(d) £X ◦ £Y − £Y ◦ £X = £[X,Y ]

(e) £X ◦ iY − iY ◦ £X = i[X,Y ].
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Let us now consider the Gerstenhaber–Jacobi structures on the Grassmann algebra A(L).
We will call these Schouten–Jacobi algebras. In view of the previous theorem, we will
identify the Schouten–Jacobi brackets on A(L) with Jacobi algebroid structures on L. We will
see that a Jacobi algebroid structure on L is determined by a Lie algebroid structure on L and
a ‘1-form’ 0 ∈ [1](L) which is closed, i.e. d0 = 0. Indeed, since D(X) = (−1)xD̃(X)

defines a graded derivative of the wedge product of degree −1, D is V (M)-linear, so D = i0
for some 0 ∈ [1](L). Moreover, since D̃(X) = [X, 1], the graded Jacobi identity implies
that D is a derivative also for the Lie bracket, i.e. D([X,Y ]) = [D(X), Y ] + [X,D(Y )] for
X,Y ∈ A0(L) which means exactly that d0 = 0. Further, the Schouten–Jacobi bracket
restricted to A0(L) is a Lie algebroid bracket. Indeed, (20) implies, in particular, that
[X, fg] = [X, f ]g + f [X, g] − D(X)fg for X ∈ A0(L), f ∈ V (M), which means that
adX induces on V a first-order differential operator X̂ + D(X)I , where X̂ is a derivation and
D(X) = adX(1) is the part of order 0 (cf theorem 2). Since for X,Y ∈ A0, f ∈ V , we have
in view of (20)

[X, fY ] = ([X, f ] − D(1)f )Y + f [X,Y ] = X̂(f )Y + f [X,Y ] (24)

the bracket on A0(L) is a Lie algebroid bracket with the anchor a(X) = X̂.
Conversely, having a Lie algebroid bracket [·, ·] on A0(L) with an anchor a and a closed

‘1-form’ 0 ∈ [1](L) we can construct a Schouten–Jacobi bracket on A(L) as it was done in
[IM1] (but here the signs are adapted to our conventions):

[X,Y ]0 = [X,Y ]SN + xX ∧ i0Y − (−1)xyi0X ∧ Y (25)

where [·, ·]SN is the Schouten–Nijenhuis bracket on A(L) induced by the Lie algebroid
structure and x, y are Lie algebra degrees of X,Y . This bracket gives the original Lie
algebroid structure on A0 and D̃(X) = [X, 1] = (−1)xi0X for X ∈ A(L). Thus we get the
following.

Theorem 5. The formula (25) describes a one–one correspondence between Schouten–Jacobi
brackets on A(L) and Jacobi algebroid structures on L, i.e. Lie algebroid brackets on A0(L)

defining Schouten–Nijenhuis brackets [·, ·]SN with the presence of a 1-cocycle 0 ∈ [1](L),
d0 = 0.

One can develop a Cartan calculus for the Jacobi algebroids similarly to the Lie algebroid
case (cf [IM1]). For a Schouten–Jacobi bracket associated with a 1-cocycle 0 the definitions
of the exterior differential d0 and Lie differential £0 = d0 ◦ i + i ◦ d0 are formally
the same as (22) and (23), respectively. Since, for X ∈ A0(L), f ∈ V (M), we have
[X, f ] = [X, f ]SN + (i0X)f , one obtains d0µ = dµ + 0 ∧ µ. Here [·, ·]SN and d are,
respectively, the Schouten–Nijenhuis bracket and the exterior derivative associated with the
Lie algebroid of the given Jacobi algebroid. For the exterior differential and Lie differential
associated with a Jacobi algebroid we have the following.

Theorem 6. Let µ ∈ [k](L), ν ∈ (L) and X,Y ∈ L. We have

(a) d0 ◦ d0 = 0
(b) d0(µ ∧ ν) = d0(µ) ∧ ν + (−1)kµ ∧ d0(ν) − 0 ∧ µ ∧ ν

(c) £0
X(µ ∧ ν) = £0

Xµ ∧ ν + µ ∧ £0
Xν − (i0X)µ ∧ ν

(d) £0
X ◦ iY − iY ◦ £0

X = i[X,Y ]

(e) £0
X ◦ £0

Y − £0
Y ◦ £0

X = £0
[X,Y ].

Proof. The proof of (a), (b) and (c) can be found in [IM1]. The property (d) follows easily
from definitions, and (e) follows easily from (d). �
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Example. Consider the Jacobi algebroid structure associated with the Nijenhuis–Richardson
bracket on ADiff 1(M). According to theorem 2, ADiff 0

1(M) can be identified with
X (M) ⊕ C∞(M), i.e. with sections of the direct sum bundle TM ⊕M R. It is easy to
see that the Lie algebroid bracket on this bundle reads (cf [IM1])

[(X, f ), (Y, g)] = ([X,Y ],X(g) − Y (f )) (26)

where the right-hand side bracket is the standard bracket of vector fields. The 1-cocycle 0,
written as i1 in theorem 2, is given by 0(X, f ) = f . The Schouten–Jacobi bracket (i.e. the
Nijenhuis–Richardson bracket in this case) reads

[A1 + I ∧ A2, B1 + I ∧ B2]RN = [A1, B1]SN + (−1)aI ∧ [A1, B2]SN + I ∧ [A2, B1]SN

+ aA1 ∧ B2 − (−1)abA2 ∧ B1 + (a − b)I ∧ A2 ∧ B2. (27)

Hence, the bracket {·, ·} on C∞(M) defined by a bilinear differential operator � + I ∧ � ∈
ADiff 1

1(M) is a Lie bracket (Jacobi bracket on C∞(M)) if and only if

[� + I ∧ �,� + I ∧ �]RN = [�,�]SN + 2I ∧ [�,�]SN + 2� ∧ � = 0. (28)

We recognize the conditions

[�,�]SN = 0 [�,�]SN = −2�∧ � (29)

defining a Jacobi structure on M [Li]. The difference in the sign when comparing with [Li]
comes from our convention for the Schouten bracket.

It is obvious that the formula (27) defines a Schouten–Jacobi bracket for any extension
L ⊕M R of a Lie algebroid L associated with the anchor map

[(X, f ), (Y, g)] = ([X,Y ], a(X)(g) − a(Y )(f )). (30)

The 1-cocycle is in this case 0((X, f )) = f .
Suppose that we have a Schouten–Jacobi bracket as above and Z ∈ A0(L). We call

X ∈ Ax(L ⊕ R) a Z-homogeneous element if [Z,X]0 = −xX. The graded subspace
spanned by Z-homogeneous elements is clearly a Lie subalgebra of the Schouten–Jacobi
bracket. We can represent the Schouten–Jacobi bracket for Z-homogeneous elements of
A(L ⊕ R) in the Schouten–Nijenhuis bracket of A(L).

Theorem 7. Let HZ be the mapping which associated with any Z-homogeneous element
A = A1 + I ∧ A2 ∈ Aa(L ⊕ R) the element HZ(A) = A1 + Z ∧ A2. Then HZ is a
homomorphism of the Schouten–Jacobi bracket (27) on Z-homogeneous elements into the
Schouten–Nijenhuis bracket on A(L):

[HZ(A),HZ(B)]
SN = [A1 + Z ∧ A2, B1 + Z ∧ B2]SN

= [A1, B1]SN + aA1 ∧ B2 − (−1)abA2 ∧ B1

+ (−1)aZ ∧ [A1, B2]SN + Z ∧ [A2, B1]SN + (a − b)Z ∧ A2 ∧ B2

= HZ([A,B]0). (31)

4. Lifts of Schouten–Jacobi brackets

Since in (25) we can put h0 instead of 0, where h is a parameter, the Schouten–Jacobi bracket
can be viewed as a deformation of the Schouten–Nijenhuis bracket.

Theorem 8. The Schouten–Jacobi brackets [·, ·]SN and [·, ·]00 defined by

[X,Y ]00 = xX ∧ i0Y − (−1)xyi0X ∧ Y (32)

are compatible, i.e. [X,Y ]h0 = [X,Y ]SN + h[X,Y ]00 is a graded Lie bracket for all h ∈ R.
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An easy way to see that the Schouten–Jacobi bracket (25) is really a graded Lie bracket is the
following.

Consider the product L̃ of the Lie algebroid L and TR, i.e. we view L̃ = L × TR

as a vector bundle over M × R with the obvious product Lie bracket and the anchor
a × id:L × TR → TM × TR. For a fixed 1-cocycle 0 ∈ [1](L) we define a Lie algebroid
injective homomorphism U0 : L → L̃ by

U0(X) = X + i0X∂t . (33)

Here sections of L and functions on M on the right-hand side are understood as sections of
L× TR and functions on M × R in a obvious way and ∂t is the basic vector field on R. Since
0 is a 1-cocycle,

[U0(X),U0(Y )] = [X,Y ] + ([X, i0Y ] + [i0X, Y ])∂t = [X,Y ] + i0[X,Y ]∂t = U0([X,Y ])

(34)

for X,Y ∈ L and U0 is really a homomorphism. This homomorphism can be extended to a
homomorphism of the whole Gerstenhaber algebra by

U0(X) = X + ∂t ∧ i0X (35)

since U0 respects the wedge product. Thus

[U0(X),U0(Y )]SN = U0([X,Y ]SN ) (36)

for all X,Y ∈ A(L). Now, we can define a new graded linear map Ũ0:A(L) → A(L̃) by
Ũ0(X) = e−xtU0(X). This mapping respects grading but not the wedge product. However,
the image of Ũ0 is a Lie subalgebra of the Schouten–Nijenhuis bracket on A(L̃). It is easy to
see the following.

Theorem 9. For X,Y ∈ A(L) we have

[Ũ0(X), Ũ0(Y )]
SN = Ũ0([X,Y ]SN + xX ∧ i0Y − (−1)xyi0X ∧ Y ). (37)

Thus Ũ0 is an embedding of the Schouten–Jacobi bracket [·, ·]0 on A(L) (induced by the
Schouten–Nijenhuis bracket and the 1-cocycle 0) into the Schouten–Nijenhuis bracket on
A(L̃), so (25) is a graded Lie bracket.

Note that on a similar idea is based the Poissonization of a Jacobi structure in [GL] and the
construction a Lie algebroid from a Jacobi structure in [Va]. The bundle projection of L×TR

over M × R onto L × R over M × R defines a Lie algebroid bracket on L × R, i.e. on
‘time-dependent sections of L’ as described in [IM1]. Composing Ũ0 with this projection we
get a representation of the Schouten–Jacobi bracket [·, ·]0 on A(L) in the Schouten–Nijenhuis
bracket of the Lie algebroid L× R (cf [IM1], section 4.2). The advantage of this construction
is that the dimension of the fibres remains the same. On the other hand, in our construction
the Lie algebroid is fixed and only the embedding depends on 0.

There is another approach to the Lie algebroids. As it was shown in [GU1, GU2], a Lie
algebroid structure (or the corresponding Schouten–Nijenhuis bracket) is determined by the
algebroid lift X → Xc which associates with X ∈ A(L) a multivector field Xc ∈ A(M).
Recall that sections µ of the dual bundle L∗ may be identified with linear (along fibres)
functions ιµ on L: ιµ(Xp) = 〈µ(p),Xp〉. By homogeneous elements of the Schouten algebra
of multivector fields on a vector bundle we understand elements which are homogeneous with
respect to the Liouville vector field ∇. This means that each contraction with differentials of
linear functions

〈
�, dιµ0 ∧ · · · ∧ dιµ�

〉
is again a linear function associated with an element
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[µ0, . . . , µ�]�. We call the bracket induced by � the multilinear operation [µ0, . . . , µλ]� on
sections of L∗. Note that these brackets have a property similar to the Lie algebroid brackets:

[µ0, . . . , µλ−1, f µλ] = f [µ0, . . . , µλ−1, µλ] + �µ0,...,µλ−1(f )µλ (38)

where

�µ0,...,µλ−1(f ) = [µ0, . . . , µλ−1, df ]� (39)

defines the Hamiltonian vector field of � associated with (µ0, . . . , µλ−1). Thus, there is a
one–one correspondence between linear multivector fields and such brackets.

Theorem 10. ([GU1]) For a given Lie algebroid structure on a vector bundle L over M there
is a unique complete lift of elements X of the Gerstenhaber algebra A(L) to homogeneous
elements Xc of the Schouten algebra A(L) of multivector fields on L, such that

(a) f c = ιdf for f ∈ C∞(M)

(b) Xc(ιµ) = ι£Xµ for X ∈ �L, µ ∈ �L∗

(c) (X∧Y )c = Xc∧Y v +Xv∧Y c, where X → Xv is the standard vertical lift of multisections
of L to multivector fields on L.

Moreover, this complete lift is a homomorphism of the Schouten–Nijenhuis brackets:

[X,Y ]c = [Xc, Y c] (40)

and

[Xc, Y v] = [X,Y ]v. (41)

Remark. For the canonical Lie algebroid L = TM, the above complete lift reduces to the
better-known tangent lift of the multivector fields on M to the multivector fields on TM (cf [IY,
GU]). The complete Lie algebroid lift of just sections of L, i.e. the formula (b), was already
indicated in [MX1].

Our aim is to find an analogue of the Lie algebroid complete lift for the Jacobi algebroids which
will represent the Schouten–Jacobi bracket on A(L) in the Nijenhuis–Richardson bracket of
first-order multidifferential operators on L. Let [·, ·]0 be the Schouten–Jacobi bracket on A(L)

associated with a Lie algebroid structure on L and a 1-cocycle 0.

Definition. The Jacobi lift of an element X ∈ Ax(L) is the element X̂0 ∈ ADiff 1(L), i.e. a
multidifferential operator of first order on L, defined by

X̂0 = Xc − xι0X
v + I ∧ (i0X)v (42)

where Xc is the complete Lie algebroid lift and Xv is the vertical lift.

Theorem 11. The Jacobi lift has the following properties:

(a) f̂ 0 = ιd0f for f ∈ C∞(M)

(b) X̂0(ιµ) = ι£0Xµ and X0(1) = 0(X) ◦ τ for X ∈ �L, µ ∈ �L∗ and τ :L → M being the
bundle projection

(c) (X ∧ Y )̂0 = X̂0 ∧ Y v + Xv ∧ Ŷ 0 − ι0(X
v ∧ Y v)

(d) [X̂0, Ŷ 0]NR = ([X,Y ]0)̂0.

Proof. The proof consists of standard calculations using the properties of the Schouten–
Nijenhuis and Schouten–Jacobi brackets and the properties of the complete lift. One
should also remember that i0[X,Y ]0 = [i0X, Y ]0 + (−1)x[X, i0Y ]0 and use the identities
(cf [GU1]) [ι0,Xv]SN = −(i0X)v and [ι0,Xc]SN = −(i0X)c (the last one depends on
d0 = 0). �
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Corollary 1. If X = � + I ∧ � is a Jacobi structure on M, then the Jacobi lift X̂0 is a
homogeneous Jacobi structure on TM ⊕ R. Moreover,

X̂0 = �c + ∂t ∧ �c − t (�v + ∂t ∧ �v) + I ∧ �v (43)

where �c, �v , etc, are the complete and vertical lifts to TM and t is the canonical linear
coordinate in R.

Proof. In our case the Lie algebroid is the extension TM ⊕ R relative to the anchor map
and the complete and vertical lifts of � and � with respect to this Lie algebroid structure
coincide with the standard tangent complete and vertical lifts. Moreover, I c = 0, I v = ∂t and
i0X = �. �

Remark. We get the same homogeneous Jacobi structure as [IM], example 5.
According to theorem 7, there is a homomorphism H∇ :ADiff 1(L) → A(L) of the

Nijenhuis–Richardson bracket on homogeneous first-order multidifferential operators into
the Schouten–Nijenhuis bracket of multivector fields on L given by H∇(X1 + I ∧ X2) =
X1 + ∇ ∧ X2, where ∇ is the Liouville vector field on the vector bundle L.

Definition. The Poisson lift Xc
0 is defined by

Xc
0 = H∇(X̂0) = Xc − xι0X

v + ∇ ∧ (i0X)v. (44)

Theorem 12. The Poisson lift has the following properties:

(a) f c
0 = ιd0f for f ∈ C∞(M)

(b) Xc
0(ιµ) = ι£0Xµ

(c) (X ∧ Y )c0 = Xc
0 ∧ Y v + Xv ∧ Y c

0 − ι0(X
v ∧ Y v)

(d)
[
Xc

0, Y
c
0

]SN = ([X,Y ]0)c0.

5. Lie algebroids associated with local Lie algebras

It is known [Fu, Ko, GU], that a Poisson structure� on M defines not only the Poisson bracket
{·, ·}� of functions, but also a Lie bracket [·, ·]� on 1-forms, given by

[µ, ν]� = £�µ
ν − £�ν

µ − d〈�,µ ∧ ν〉 (45)

where �µ = iµ� and 〈·, ·〉 is the pairing between forms and multivector fields. In particular,
[df, dg]� = d{f, g}� and �# is a Lie bracket homomorphism:

[�µ,�ν ]� = �[µ,ν]� . (46)

This bracket on 1-forms is a Lie algebroid bracket and it induces the corresponding Schouten–
Nijenhuis bracket on(M). It was observed by Koszul [Ko] (see also [KSM]) that this bracket
has a generating operator ∂�:

[µ, ν]� = (−1)m
(
∂�(µ ∧ ν) − ∂�µ ∧ ν − (−1)mµ ∧ ∂�ν

)
(47)

where ∂� = i(P ) ◦ d − d ◦ i(P ) and m is the standard degree of the form µ. Note that ∂� is a
homology operator, since ∂2

� = 0. Moreover,

d[µ, ν]� = [dµ, ν]� + (−1)m−1[µ, dν]�. (48)

The whole structure, i.e. the Gerstenhaber algebra with the generating operator ∂ for the Lie
bracket satisfying ∂2 = 0 is called a Batalin–Vilkovisky algebra (cf [KS]). With the presence
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of the derivation d of both: the associative and Lie algebra structures it is a differential
Batalin–Vilkovisky algebra.

It is well known [GU] that the Lie algebroid bracket (45) is induced by the complete lift
�c. Now, it should be no surprise that the Lie algebroid bracket (1) we started with is induced
by our Poisson lift of the corresponding Jacobi structure.

Theorem 13. If X = � + I ∧ � is a Jacobi structure on M, then the Poisson lift Xc
0 is a

homogeneous Poisson structure on TM ⊕ R. Moreover,

Xc
0 = �c + ∂t ∧ �c − t�v + ∇ ∧ �v (49)

where �c, �v , etc, are the complete and vertical lifts to TM, respectively, ∇ is the Liouville
vector field on TM and t is the canonical linear coordinate in R. This homogeneous
Poisson structure determines a Lie algebroid bracket on the dual bundle T ∗M ⊕ R, given
for µ, ν ∈ �(T ∗M ⊕ R), µ = (α, f ), ν = (β, g), by

[µ, ν] = £0
Xµ
ν − £0

Xν
µ − d0〈X,µ ∧ ν〉 (50)

where Xµ = iµX = (iα�+f�,−iα�), Xν = iνX = (iβ�+g�,−iβ�) are the corresponding
first-order operators viewed as sections of TM ⊕ R and 0 is the 1-cocycle defined by the
projection on R. This bracket coincides with (1).

Proof. The first part follows immediately from the general result. To show (50) consider
X = X1 ∧ X2 and µ = µ1 ∧ µ2, where Xi ∈ A0, µi ∈ [1]. Then the bracket

{
ιµ1 , ιµ2

}
Xc

0

defined by Xc
0 is given by

〈
(X1)

c
0 ∧ (X2)

v + (X1)
v ∧ (X2)

c
0 − ι0(X

v
1 ∧ X2)

v, dιµ1 ∧ dιµ2

〉
. (51)

This is the linear function
∑

i,j

(−1)i+j (Xi)
c
0

(
ιµj

) 〈
Xv

σ(i), ιµσ(j)

〉 − ι0
〈
Xv, dιµ1 ∧ dιµ2

〉
(52)

where σ is the transposition of (1, 2). Taking into account that Y c
0(ιν) = ι£0Y ν and

Y v(ιν) = ι〈Y,ν〉 we get that this linear function corresponds to
∑

i,j

(−1)i+j 〈Xi,µj 〉£0
Xσ(i)

µσ(j) − 〈X,µ〉0. (53)

In view of the properties f £0
Y ν = £0

fY ν − 〈Y, ν〉d0f and d0(fg) = f d0g + gd0f − fg0,
we get (50). To show that this is exactly (1) it suffices to lead easy calculations with
£0
Y+f I ν = £Y ν + f ν. �

Of course, instead of the Jacobi structure X = � + I ∧ � we can start from an arbitrary
Schouten–Jacobi bracket [·, ·]0 on A(L) and an element X ∈ A1(L) with [X,X]0 = 0 (we
will call such X a Jacobi element) and use the formula (50) to define a Lie algebroid structure
on L∗ (see [IM1]).

Example. Let L be a Lie algebroid and (�,�) be a Lie algebroid Jacobi structure, i.e.
� ∈ A1(L), � ∈ A0(L), satisfy (29). Then, the element X = � + I ∧ � regarded as a
bisection of the Lie algebroid extension L⊕M R relative to the anchor map (cf (30)) is a Jacobi
element of the Schouten–Jacobi bracket associated with the 1-cocycle given by0((Y, f )) = f

(cf example 1). Thus, the Poisson lift Xc
0 defines a Lie algebroid bracket on L∗ ⊕M R which

is formally the same as (1).
The formula (50) for the bracket of ‘1-forms’ generated by Xc

0 can be generalized for
arbitrary X ∈ Ax(L) as follows.
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Theorem 14. The bracket [µ0, . . . , µx]Xc
0

for µi ∈ �L∗ induced by Xc
0 by

ι[µ0,...,µx ]Xc
0

= 〈
Xc

0, d0ιµ0 ∧ · · · ∧ d0ιµx

〉
(54)

reads

[µ0, . . . , µx]Xc
0

=
x∑

k=0

(−1)x+k£Xk
µk − xd0〈X,µ0 ∧ · · · ∧ µx〉 (55)

where

Xk = iµ0∧···∧µ̌k∧···∧µx
X. (56)

In particular,

[d0f0, . . . , d0fx]Xc
0

= d0
〈
X, d0f0 ∧ · · · ∧ d0fx

〉
. (57)

Remark. In the case when the differentials d0f generate L∗ almost everywhere the formula
(57) defines the bracket, thus the homogeneous tensor Xc

0, uniquely.

Suppose now that L is a one-dimensional vector bundle over M. Like in the case of the trivial
bundle, the graded space ADiff 1(L) of first-order multidifferential operators on L is a Lie
subalgebra of the Richardson–Nijenhuis bracket on A(L)—the space of multilinear maps of
the vector space V = L of sections of L. The difference with the case V = C∞(M) is that
we do not have a natural associative algebra structure on V . However locally, fixing a basic
section over an open subset N of M, we have an isomorphism of the corresponding graded
Lie algebras ADiff 1(L|N) and ADiff 1(N). Thus, locally, we have the Poisson lift Ac

0 for
any A ∈ ADiff 1(L). The problem is that what corresponds to 1, and hence what is 0 on
ADiff 1(L), depends on the choice of the local section. However, using the preceding remark,
we can conclude that there is a uniquely defined complete lift Ac

loc. This time it is not a
multivector field on TM ⊕M R but on the dual J ∗

1 (L) to the first jet bundle J1(L). Of course,
in the trivial case, J1(L) is canonically isomorphic with T ∗M ⊕ R, so J ∗

1 (L) is isomorphic
with TM ⊕ R but for non-trivial bundles it is not the case. We just define the complete lift
Ac

loc as the unique homogeneous (a + 1)-vector field on J ∗
1 (L) such that〈

Ac
loc, dιj1(f0) ∧ · · · ∧ dιj1(fa)

〉 = j1(A(f0, . . . , fa)) (58)

for all sections f0, . . . , fa of L. Here j1 means the first jet prolongation of a given section.
Since the first jet prolongations of sections of L generate J1(L) over an open-dense subset,
the multivector field Ac

loc is uniquely defined. Moreover, it is easy to see that for any local
trivialization Ac

loc coincides with Ac
0. Since all our brackets are local over M, we get the

following.

Theorem 15. The complete lift of first-order differential operators on a one-dimensional
bundle defined by (58) is a homomorphism of the Nijenhuis–Richardson bracket on ADiff 1(L)
into the Schouten–Nijenhuis bracket of homogeneous multivector fields on J ∗

1 (L).

Corollary 2. IfX ∈ A1Diff 1(L) represents a local Lie algebra bracket on L, thenXc
loc induces

a Lie algebroid structure on the first jet bundle J1(L).

Remark. There is no clear analogue of the Jacobi lift for ADiff 1(L), since locally it depends
strongly on the 1-cocycle 0 associated with the trivialization. This suggests that the lift to
multivector fields is primary with respect to the Jacobi lift. Note also that ADiff 1(L) is a
C∞(M)-module and the Nijenhuis–Richardson bracket on Diff 1(L) is a Lie algebroid bracket
like in the trivial case. This time, however, we have no splitting Diff 1(L) = Der(L)⊕C∞(M)

(it makes no sense) but we have an exact sequence

0 → C∞(M) → Diff 1(L) → X (M) → 0 (59)

which gives the anchor map for this Lie algebroid and splits only when the bundle L is
trivializable.
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6. Jacobi bialgebroids

Recall that a Lie bialgebroid [KS, MX] is a dual pair (L,L∗) of vector bundles equipped with
Lie algebroid structures such that the differential d∗ induced from the Lie algebroid structure
on L∗ as defined by (22) is a derivation of the Schouten–Nijenhuis bracket induced by the
Jacobi algebroid structure on L:

d∗[X,Y ] = [d∗X,Y ] + (−1)x[X, d∗Y ] for all X,Y ∈ A(L). (60)

For Jacobi algebroids we will keep formally the same definition.

Definition. A Jacobi bialgebroid is a dual pair (L,L∗) of vector bundles equipped with Jacobi
algebroid structures such that the differential d∗ induced from the Jacobi algebroid structure
on L∗ is a derivation of the Schouten–Jacobi bracket induced by the Jacobi algebroid structure
on L.

Remark. Note that the above definition coincides with the definition of generalized Lie
bialgebroid in [IM1]. Indeed, the condition (4.1) in [IM1] is just (60) for X,Y ∈ A0(L), and
the condition (4.2) is just (60) for Y = 1, so every Jacobi bialgebroid is a generalized Lie
algebroid in the sense of [IM1]. To show the converse we will use the following lemma.

Lemma 1. If d∗ is the differential on A associated with a Jacobi algebroid structure on L∗,
then

d∗[X,Y ∧ Z] − [d∗X,Y ∧ Z] − (−1)x[X, d∗(Y ∧ Z)]

= (d∗[X,Y ] − [d∗X,Y ] − (−1)x[X, d∗Y ]) ∧ Z

+ (−1)x(y+1)Y ∧ (d∗[X,Z] − [d∗X,Z] − (−1)x[X, d∗Z])

− (d∗D̃(X) − D̃(d∗X) − (−1)x[X,X0]) ∧ Y ∧ Z (61)

where X0 = d∗1.

Proof. The proof consists of standard calculations using (20) and the following property of
the exterior differential:

d∗(Y ∧ Z) = (d∗Y ) ∧ Z + (−1)y+1Y ∧ (d∗Z) − X0 ∧ Y ∧ Z. (62)

�

Theorem 16. If (60) is satisfied for all X,Y ∈ A0(L) and all X ∈ V (M) ⊕ A0(L), Y = 1,
then it is satisfied in general.

Proof. First, note that

d∗D̃(X) − D̃(d∗X) − (−1)x[X,X0] = d∗[X, 1] − [d∗X, 1] − (−1)x[X, d∗1] = 0 (63)

for X ∈ V (M)⊕A0(L). Hence, for X,Y ∈ A0(L) and f ∈ V (M) we get from (61) and (60)
for elements of A0(L):

(d∗[X, f ] − [d∗X, f ] − [X, d∗f ]) ∧ Y = 0 (64)

so (60) is satisfied also for X ∈ A0(L) and Y ∈ V (M). Using, in turn, this fact when applying
X = f, Y = g ∈ V (M), Z ∈ A0(L), to (61), we get

(d∗[f, g] − [d∗f, g] + [f, d∗g])Z = 0 (65)

so (60) is satisfied for all X,Y ∈ V (M) ⊕ A0(L). Now, we can prove (60) by induction with
respect to the sum x + y of degrees of X and Y . If x + y � 0 and, say, y > 0 (the case
x = y = 0 is covered by assumption), then we can write Y as a linear combination of wedge
products A ∧ B with a, b < y and (60) follows for X,Y by induction in view of (61). �
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Example. In [IM1], theorem 5.1, it is shown that any Jacobi elementX ∈ A1(L), [X,X]0 = 0
for a Jacobi algebroid structure in A(L) associated with a 1-cocycle 0 ∈ A0(L∗) gives rise to
a Jacobi bialgebroid for which the Lie algebroid structure on A(L∗) is given by the formula
(50) and the corresponding 1-cocycle is −X0. This is, of course, a Jacobi analogue of a
triangular Lie bialgebroid in the sense of Mackenzie and Xu [MX].

7. Conclusions

We have shown that, by analogy with Lie algebroids (regarded as odd Poisson brackets), one
can define Jacobi algebroids (regarded as odd Jacobi brackets) on the Grassmann algebraA(L)

associated with a vector bundle L. Jacobi algebroids in this sense turn out to be objects already
studied by Iglesias and Marrero [IM1]. It is possible to develop a Cartan calculus for Jacobi
algebroids. We have constructed lifts of tensor fields which transport the Schouten–Jacobi
bracket on A(L) into the Schouten bracket of multivector fields on the total space L. This
leads to a natural construction which associates a Lie algebroid with every local Lie algebra
of Kirillov. We have also shown that a notion of a Jacobi bialgebroid can be consistently
introduced with the full analogy to the classical case.

Since every Lie algebroid can be viewed as a particular case of a Batalin–Vilkovisky
algebra [Xu], it is natural to look for a similar correspondence in the case of Jacobi algebroids.
Initial attempts in this direction have been made in [ILMP]. There is a natural way of defining
generating operators for the Schouten–Jacobi brackets and of defining the corresponding
homology. We postpone detailed studies of these questions to a separate paper.
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